晶振官方博客
更多>>32.768K,晶振电容匹配,晶振IC匹配电路
来源:http://www.konuaer.com 作者:konuaer 2012年04月23
Kang Waldorf Electronics Co., Ltd. -
quartz crystal design circuit Guide
Sport Waldorf electronics: the night of the continuous development of growth, from civil crystal, industrial crystal, military crystal, from the DIP crystal oscillator, SMD crystal, ceramic atomization piece, satellite navigation, SAW filter series.
From chip research and development, circuit design. The company already has the technology and development of production capacity, now some crystal design circuit, 32.768K kHz crystal matching capacitor, crystal match the IC, the crystal oscillation mode, the drive voltage and power, the welding temperature curve application published, I hope this can help to the needy and design to
Oscillation Circuit Design Overview
Oscillation Circuit Design Key Parameters
DRIVE LEVEL (DL), OSCILLATION FREQUENCY AND LOAD CAPACITANCE (CL),
OSCILLATION ALLOWANCE, FREQUENCY-TEMPERATURE CURVE
DRIVE LEVEL (DL)
The drive level of a crystal unit is shown by the level of the operating power or the current consumption (see Figures 9,10, and 11). Operating the crystal unit at an excessive power level will result in the degradation of its characteristics, which may cause frequency instability or physical failure of the crystal chip. Design your circuit within absolute maximum drive level.
OSCILLATION FREQUENCY AND LOAD CAPACITANCE (CL)
The load capacitance (CL) is a parameter for determining the frequency of the oscillation circuit. The CL is represented by an effective equivalent capacitance that is loaded from the oscillation circuit to both ends of the crystal unit (see Figure 12). The oscillation frequency varies depending upon the load capacitance of the oscillation circuit. In order to obtain the desirable frequency accuracy, matching between the load capacitances of the oscillation circuit and the crystal unit is required. For the use of the crystal unit, match the load capacitances of the oscillation circuit with the load capacitances of the crystal unit.
OSCILLATION ALLOWANCE
To ensure stable oscillation, the negative resistance of the circuit should be significantly larger than the equivalent series resistance (the oscillation allowance is large). Ensure that the oscillation allowance is at least five times as large as the equivalent series resistance.
Oscillation Allowance Evaluation Method
Add resistor "Rx" to the crystal unit in series and ensure that the oscillation starts or stops. The approximate negative resistance of the circuit is the value obtained by adding the effective resistance "Re" to the maximum resistance "Rx" when the oscillation starts or stops after gradually making Rx value larger.
Negative resistance |- R| = Rx + Re
|−R| is a value at least five times as large as the maximum equivalent series resistance (R1 max.) of the crystal unit.
*Re is the effective resistance value during oscillation.
Re = R1 (1 + CO/CL ) 2
FREQUENCY-TEMPERATURE CURVE
Frequency temperature characteristics of tuning fork crystals is shown by negative quadratic curve which has a peak at 25ºC as per left graph.
Please make sure to consider the temperature range and frequency accuracy you need since magnitude of frequency variation becomes larger and larger as the temperature range becomes wider.
[Approximation formula of frequency temperature characteristics]
f_tem = B(T-Ti) 2
B : Parabolic coefficient
T : Given temperature
Ti : Turnover temperature
作者:康华尔----晶振帝国
quartz crystal design circuit Guide
Sport Waldorf electronics: the night of the continuous development of growth, from civil crystal, industrial crystal, military crystal, from the DIP crystal oscillator, SMD crystal, ceramic atomization piece, satellite navigation, SAW filter series.
From chip research and development, circuit design. The company already has the technology and development of production capacity, now some crystal design circuit, 32.768K kHz crystal matching capacitor, crystal match the IC, the crystal oscillation mode, the drive voltage and power, the welding temperature curve application published, I hope this can help to the needy and design to
Oscillation Circuit Design Overview
Oscillation Circuit Design Key Parameters
DRIVE LEVEL (DL), OSCILLATION FREQUENCY AND LOAD CAPACITANCE (CL),
OSCILLATION ALLOWANCE, FREQUENCY-TEMPERATURE CURVE
DRIVE LEVEL (DL)
The drive level of a crystal unit is shown by the level of the operating power or the current consumption (see Figures 9,10, and 11). Operating the crystal unit at an excessive power level will result in the degradation of its characteristics, which may cause frequency instability or physical failure of the crystal chip. Design your circuit within absolute maximum drive level.
OSCILLATION FREQUENCY AND LOAD CAPACITANCE (CL)
The load capacitance (CL) is a parameter for determining the frequency of the oscillation circuit. The CL is represented by an effective equivalent capacitance that is loaded from the oscillation circuit to both ends of the crystal unit (see Figure 12). The oscillation frequency varies depending upon the load capacitance of the oscillation circuit. In order to obtain the desirable frequency accuracy, matching between the load capacitances of the oscillation circuit and the crystal unit is required. For the use of the crystal unit, match the load capacitances of the oscillation circuit with the load capacitances of the crystal unit.
OSCILLATION ALLOWANCE
To ensure stable oscillation, the negative resistance of the circuit should be significantly larger than the equivalent series resistance (the oscillation allowance is large). Ensure that the oscillation allowance is at least five times as large as the equivalent series resistance.
Oscillation Allowance Evaluation Method
Add resistor "Rx" to the crystal unit in series and ensure that the oscillation starts or stops. The approximate negative resistance of the circuit is the value obtained by adding the effective resistance "Re" to the maximum resistance "Rx" when the oscillation starts or stops after gradually making Rx value larger.
Negative resistance |- R| = Rx + Re
|−R| is a value at least five times as large as the maximum equivalent series resistance (R1 max.) of the crystal unit.
*Re is the effective resistance value during oscillation.
Re = R1 (1 + CO/CL ) 2
FREQUENCY-TEMPERATURE CURVE
Frequency temperature characteristics of tuning fork crystals is shown by negative quadratic curve which has a peak at 25ºC as per left graph.
Please make sure to consider the temperature range and frequency accuracy you need since magnitude of frequency variation becomes larger and larger as the temperature range becomes wider.
[Approximation formula of frequency temperature characteristics]
f_tem = B(T-Ti) 2
B : Parabolic coefficient
T : Given temperature
Ti : Turnover temperature
作者:康华尔----晶振帝国
正在载入评论数据...
此文关键字: 32.768K匹配电容技术资料晶振
相关资讯
- [2020-07-16]实时时钟(RTC)标准应用32.768K晶体振荡...
- [2020-06-29]Silicon新型Ultra Series™振荡器可提高...
- [2020-06-15]强推5款可用于物联网的Ecliptek品牌32....
- [2020-04-28]村田专为USB4设计的差分共模噪声滤波器...
- [2020-04-22]日常推荐ECS品牌1210封装微型音叉晶体数...
- [2020-04-06]不惧新冠疫情,MtronPTI公司推出用于卫星...
- [2020-03-12]Jauch推荐MEMS TCXO系列振荡器可用于智...
- [2020-01-16]2019年最全的FOX石英晶振新旧料号替换表...
- [2019-12-30]Epson低相噪差分输出F系列VCXO振荡器入...
- [2019-12-13]ECS晶体振荡器系列ECS-1618-300-BN-TR产...
- [2019-11-25]泰艺高频小型FASTXO振荡器系列规格书介...
- [2019-11-20]NT3225SA-13.000000MHZ日本NDK振荡器原...