晶振官方博客
更多>>无源晶振与有源晶振的作用
石英晶振也有分为好多种,普通石英晶振,有源晶振,压控晶体振荡器,温补晶振,恒温晶振等。在电子学上,通常将含有晶体管元件的电路称作“有源电路”(如有源音箱、有源滤波器等),而仅由阻容元件组成的电路称作“无源电路”。电脑中的晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。
有源晶振型号众多,而且每一种型号的引脚定义都有所不同,接法也不同,下面我介绍一下有源晶振引脚识别,以方便大家
有个点标记的为1脚,按逆时针(管脚向下)分别为2、3、4。
有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。
有源晶振不需要处理器的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可如下图),不需要复杂的配置电路。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。
有源晶振是右石英晶振组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。
压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC电路。在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。该振荡器供电电压为5V,输出波形为方波。
有源晶振型号纵多,而且每一种型号的引脚定义都有所不同,接发也不同,下面我介绍一下有源晶振引脚识别,以方便大家
有个点标记的为1脚,按逆时针(管脚向下)分别为2、3、4。
有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。
有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。
有源晶振是右石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶振就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。
压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。
石英晶体振荡器的频率稳定度可达10^-9/日,甚至10^-11。例如10MHz的振荡器,频率在一日之内的变化一般不大于0.1Hz。因此,完全可以将晶体振荡器视为恒定的基准频率源(石英表、电子表中都是利用石英晶体来做计时的基准频率)。从PC诞生至现在,主板上一直都使用一颗14.318MHz的石英晶体振荡器作为基准频率源。主板上除了这颗14.318MHz的晶振,还能找到一颗频率为32.768MHz的晶振,它被用于实时时钟(RTC)电路中,显示精确的时间和日期
方形有源晶振引脚分布:
1、正方的,使用DIP-8封装,打点的是1脚。
1-NC; 4-GND; 5-Output; 8-VCC
2、长方的,使用DIP-14封装,打点的是1脚。
1-NC; 7-GND; 8-Output; 14-VCC
BTW:
1、电源有两种,一种是TTL,只能用5V,一种是HC的,可以3.3V/5V
2、边沿有一个是尖角,三个圆角,尖角的是一脚,和打点一致。
相关资讯
- [2022-09-07]出色稳定性能的5032mm石英晶体振荡器X1...
- [2022-08-01]diodes晶振专用于时间显示设备的32.768...
- [2022-07-27]伊西斯的新型且创意的低姿态TCXO晶体振...
- [2020-06-22]深入探讨有源晶振8个基础参数词汇
- [2020-05-25]SiTime开发的新软件可模拟振荡器时间误...
- [2020-05-12]微处理器应该怎样选择匹配晶振?一文足...
- [2020-04-14]NDK株式会社差分振荡器NP3225SBB规格更...
- [2020-03-13]不同类型的Crystal Oscillator工作与电...
- [2019-11-09]了解EPSON晶振独特的封装技术
- [2019-09-21]NDK振荡器电路图介绍及安装示例
- [2019-09-16]拥有声子晶体结构的AT切割谐振器共振分...
- [2019-09-04]SMD Oscillator高温回流焊接的滞后反应...